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The gauge field copies and Backlund transformation 

Ziemowit Popowiczi 
Dipartimento di Fisica, Universita di Roma 'La Sapienza', Roma, Italy 

Received 30 June 1986 

Abstract. We show explicitly that the famous auto Backlund transformation and non-auto 
Kruskal-Dodd-Bullough transformation for the sine-Gordon equation can be interpreted 
as the gauge field copies for the strength tensor associated with the Lax pair for the 
sine-Gordon equation. In the same way we interpret the auto and non-auto Backlund 
transformation for the Liouville equation. 

1. Introduction 

Backlund introduced his transformation [ 11 as the transformation mapping one 
pseudospherical surface into another. Originally Backlund considered the line element 
of a surface of constant negative curvature which can be written as 

( d s ) 2 = a 2 [ ( d ~ ) 2 + 2 d x d y ~ ~ ~ w + ( d y ) 2 ]  (1.1) 

where - l / a 2  is the constant total curvature of the surface and w is the angle between 
the asymptotic lines satisfying the celebrated sine-Gordon equation 

- w = sin w. 
a2 

axay 

It was found by Backlund that a new solution (i.e. surface) w ,  could be obtained 
from a given solution by means of the relation 

a 
- (wI -w)=2A sin - 
ax (1 .3)  

where A is an arbitrary constant. 
The sine-Gordon equation belongs to the special class of non-linear partial differen- 

tial equations which have attracted the attention of physicists for a long time. These 
equations, the so-called soliton equations, have important physical applications and 
share several remarkable properties. 
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(i)  The initial value problem can be solved exactly in terms of linear procedures 
by the use of the so-called ‘inverse scattering transformation’. 

( i i )  They have infinite numbers of ‘conservation laws’. 
( i i i )  They have a ‘Backlund transformation’. 
(iv) They describe pseudospherical surfaces. 
Many papers in the last decade considered how these properties are connected 

amongst themselves [l-131. Here we would like to consider how the Backlund transfor- 
mation is connected with the inverse scattering transformation. This method was first 
devised for the Korteweg-de Vries equation [2,3]. Later it was extended by Zakharov 
and Shabat to a 2 x 2 scattering problem for the non-linear Schrodinger equation [4] 
and was subsequently generalised by Ablowitz et a1 ( A K N S )  [5] to include a variety 
of non-linear equations. The heart of the AKNS framework is the so-called Lax pair 

a 
ax+ 

*+ = - * = A+* 

where 4 is a two-column vector and A, = A * ( f , f + , f - ,  f+-, . . . , A )  are 2 x 2 matrices 
depending on some functionf=f(x+, x-), its derivatives and on the spectral parameter 
A whose integrability condition 

a&A+-a+A-+[A+, A-]=O (1.7) 

gives us the broad class of the two-dimensional non-linear partial differential equations 
on the function f: 

Chen [6] and Wadati et aZ[7] showed that many Backlund transformations for the 
soliton equations can be derived from the set of Riccati equations obtained from the 
inverse scattering transformation. The connection between those two methods can 
also be formulated in the geometrical language. 

The geometrical interpretation of the inverse scattering transformation can be 
achieved [8,9] by association of a pair of completely integrable Pfaffian equations 

d u = R u  (1.8) 

where U is a two-column vector and d denotes the exterior derivative. The 2 x 2 matrix 
R is a one-parameter ( A  is the eigenvalue) family of 1-forms in the independent 
variables x+,  x- . Integrability of (1.8) 

(1.9) O = d 2 u = d R u  -R A d o =  (dR -0 A R )v  

requires the vanishing of the 2-form 

6 = dR -0 A (1.10) 

which plays the same role as (1.7). Sasaki [ lo]  has shown that in this geometrical 
framework the Backlund transformation which maps one pseudospherical surface into 
another is obtained from R by the gauge transformation 

U ’  = Au R’ = dAA-’ + ARA-’ (1.1 1) 

6’ = A M I  (1.12) 

where A is an arbitrary matrix with the determinant unity. 
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On the other hand, Levi et a1 [ 11,121 has shown that the Backlund transformation 
can be interpreted as the gauge transformation of the Lax pair-analogous to the 
geometrical approach. 

These methods apply to all known auto Backlund transformations (e.g. the transfor- 
mation mapping solutions of a given equation into solutions of the same equation) 
for the equations obtained from the A K N S  scheme. The present author has shown [ 131 
that the non-auto Backlund transformation (e.g. the transformation mapping solutions 
of a given equation into solutions of the different equation) for the Liouville equation 
can be interpreted as the transformation which relates two different gauge copies of 
the field strength tensor associated with the Lax pair for the Liouville equation. In 
this paper we would like to continue this approach and we explicitly show also that 
the auto Backlund transformation for the Liouville and sine-Gordon equations (see 
(1.3) and (1.4)) can be interpreted in a similar manner. Also we show that the non-auto 
Kruskal-Dodd-Bullough transformation [ 141 for the sine-Gordon equation has the 
same structure. 

The gauge field copies appear in the gauge theories and describe the surprising 
phenomenon that two non-singular potentials can give rise to identical field strengths 
('copies') without being gauge equivalent. Since its discovery [ 151 and the discussion 
of necessary conditions for its occurrence E161 a number of further examples have 
been given [17-191 and there is now a sizable literature on this subject [19-211. In 
[21-251 several authors discussed the construction of field copies and the criteria for 
determining which connections are defined uniquely by their curvature. 

Let us apply the concept of the gauge field copies to the Lax pair (1.5) and (1.6).  
First let us notice that, besides considering the integrability condition (1.7), it is possible 
to introduce the two-dimensional field strength tensor for the Lax pair by 

F + - = a + A - - a - A + + [ A + ,  A-] (1.13) 

where A, are the same matrix functions as in ( 1 . 5 )  and (1.6).  It is well known that 
under the gauge transformation of the potentials 

A: = g-'A,g + g-'a,g (1.14) 

where g belongs to some gauge group, the field strength tensor transforms as 

F;- = g-'F+_g. (1 .15 )  

The main problem in the gauge field copies is to find two non-gauge equivalent 
potentials which give the same field strength tensor. In the general case let us assume 
that we have two potentials A, and A: where 

A:=A,+A:. (1.16) 

Then the condition that these potentials produce the same field strength tensor is 

F:-= F+-=d+A!-d-A:+[A:, AY] ( 1 . 1 7 )  

and reduces to the following system of equations for the matrix functions: 

d+A! -&A: + [ A + ,  A'!] + [A:, A-] +[A:, A'!] = 0. (1.18) 

In the next section we consider the equations (1.16) and (1.18) for the Liouville and 
sine-Gordon equations in order to find the matrices A: which give us the same strength 
tensor and  we show that they are generated by the different Backlund transformations. 
In the appendix we prove that these potentials are gauge non-equivalent. 
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2. The gauge field copies for the Liouville and sine-Gordon equations 

For the Liouville equation we have the following A K N S  representation: 

++=(Au3+f+ui)+ = A++ 

I,- = (e2~’/2A)(u,-iu,)+=A_+ 

where U,, U,, u3 are the Pauli matrices and A is the spectral parameter. The field 
strength tensor associated with this equation and this Lax pair is 

(2.3) F =-ee2f(u,-iuz)-(e2f+f+_)ul. 2f+ 
A +- 

Assuming the following form of A: 

A: = au3 + iu2b (2.4) 

A! = K u ,  (2.5) 

where a, b, K are some functions, then equation (1.18) reduces to 

a-a = 2bK (2.6) 

a_b=2AK + 2 a K  (2.7) 

a+ K = ( a  + b)e2f/A. (2.8) 

One can easily prove that the following functions 

(a)  

a = A sinh 2(g -f) - A  

b = A cosh 2(g -f) 

K = A exp(f+ g )  

satisfy (2.6)-(2.8) and are equivalent with the auto Backlund transformation 

a-(g -f) = A exp( f+g)  

a + ( g  +f )  = (2/A) sinh(g -f)  

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

for which the integrability condition give us the Liouville equation for f as well as 
for g. 

(b)  

a = exp[2(f+ U)] - A (2.14) 

b = -exp[2(f+ U)] (2.15) 

K = -A exp(f-  U )  (2.16) 

satisfy (2.6)-(2.8) too and are equivalent with the non-auto Backlund transformation 

(2.17) 

(2.18) 

a + ( f -  U )  = (1/A) exp(f+ v )  

&(f+ U )  = A  exp(f-  U )  
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for which the integrability condition gives us the Liouville equation for f and the 
two-dimensional Laplace equation for U. 

For the sine-Gordon equation we have the following A K N S  representation 

*+ = (77a,-liw+a*)* = A+* (2.19) 

cos w U , + ~ U , ) + = A - I J I  
*-=(, 477 

w +  w+ F+- = - cos w a I  -4i (U+- +sin w ) a 2 - -  sin wa3 
277 277 

where now 77 is the spectral parameter. 
Assuming the following form of A: 

A: = au3 + ba, 

A? = Ka, 

the system (1.18) reduces to 

a-a = 2iKb 

-a-b = 2iqK +2iaK 

277a+K = i ( b c o s w - a  sincu). 

Now one can easily check that 

(a) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

a = v  cos(w,+w)-T (2.27) 

b =  77 sin(w,+w) (2.28) 

K = i A  sin f ( w ,  - w )  (2.29) 

satisfy (2.24)-(2.26) and are equivalent with the auto Backlund transformation for the 
sine-Gordon equation (1.2)-( 1.4). 

(b) 

a = 77 cos 2 w ,  - 77 

b = 77 sin 2w, 

K = ( i / A )  sin(w, - w )  

(2.30) 

(2.31) 

(2.32) 

satisfy (2.24)-(2.26) too and are equivalent with the non-auto Kruskal-Dodd-Bullough 
[ 141 transformation for the sine-Gordon equation 

8 - w ,  = ( 1 / A )  sin(w, - w )  (2.33) 

a+(w,  - U )  = A sin U , .  (2.34) 

The integrability condition for (2.33) and (2.34) gives us the sine-Gordon equation for 
w and w 1  satisfy 

sin U , .  (2.35) 2 I / 2  a+-w,  = [ 1 - (Aa-w, )  ] 
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Appendix. The gauge non-equivalence of the potentials A* and A; 

It is a technical problem so we only outline the proof here. In order to prove that the 
potentials A, and A: cannot be connected in our cases by the gauge transformation 
(1.14) we produce the contradiction. Let us assume that (1.14) and (1.15) is valid then 
we obtain the following lemma. 

Lemma. Let F+- be such as in (1.13). Then in order to satisfy (1.15) and (1.17) g 
should be 

g=cF+-+Xl  (‘41) 
where c and x are arbitrary functions such that det g # 0 and g belongs to a some 
gauge group. 

Proof: The condition (1.15) under assumption (1.17) is equivalent with [g, F+-] = 0. 
Assuming that g = a p ,  + x l ,  i = 1, 2, 3, and using F+- = Fy-a, which is valid for the 
AKNS system we easily recognise that (1.15) is equivalent to the homogeneous system 
of the algebraic equations on the functions ai. The determinant of this system is equal 
to zero. 

On the other hand, the condition (1.14) can be rewritten as 

[g, A,] + gAO, = a,g. (A2) 

In order to find the contradiction in this formula we use (Al)  for the particular cases 
considered in the previous section. 

(a) Liouville equation. For the non-auto Backlund transformation from (Al)  and 
(A2) it follows that 

x = -c(e”+f+-) (A31 

2f+e2* a+ In c(e” +f+-) = - 
(e2* +f+-) 

a- In c(e”+f+-) = A exp(f- U )  (‘45) 

which is impossible because the integrability of (A4) and (AS) cannot be fulfilled. 
For the auto Backlund transformation using (Al)  and (A2) we obtain 

x = c(e”+f+-) coth(g -f) (A6) 

which is in contradiction because also from (A2) it follows that for f satisfying the 
Liouville equation we obtain 

a+(g -f) = -2f+ eg-’ sinh(g -f) (A7) 

which is not true. 
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(b) Sine-Gordon equation. From condition (A2) it follows that 

a-( cF:-) = iF:- c sin ~ 1 2 7 )  + icKF:- (A8) 

a-(cF:-) = -icKF:--icF:-cos w/27 (A9) 

where K and Fk- ,  i = 1,2,3, are defined by (2.29) or (2.32) and by (2.21) respectively. 
Equations (A8) and (A9) are in contradiction because from these formulae it follows 
that to satisfy the sineGordon equation we obtain 

-iK = a _ w  

which is not true both for auto and non-auto Backlund transformations. 
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